3.4.1 \(\int \frac {\tan ^3(c+d x)}{(a+i a \tan (c+d x))^{4/3}} \, dx\) [301]

3.4.1.1 Optimal result
3.4.1.2 Mathematica [C] (verified)
3.4.1.3 Rubi [A] (warning: unable to verify)
3.4.1.4 Maple [A] (verified)
3.4.1.5 Fricas [B] (verification not implemented)
3.4.1.6 Sympy [F]
3.4.1.7 Maxima [A] (verification not implemented)
3.4.1.8 Giac [F]
3.4.1.9 Mupad [B] (verification not implemented)

3.4.1.1 Optimal result

Integrand size = 26, antiderivative size = 237 \[ \int \frac {\tan ^3(c+d x)}{(a+i a \tan (c+d x))^{4/3}} \, dx=-\frac {i x}{8 \sqrt [3]{2} a^{4/3}}-\frac {\sqrt {3} \arctan \left (\frac {\sqrt [3]{a}+2^{2/3} \sqrt [3]{a+i a \tan (c+d x)}}{\sqrt {3} \sqrt [3]{a}}\right )}{4 \sqrt [3]{2} a^{4/3} d}-\frac {\log (\cos (c+d x))}{8 \sqrt [3]{2} a^{4/3} d}-\frac {3 \log \left (\sqrt [3]{2} \sqrt [3]{a}-\sqrt [3]{a+i a \tan (c+d x)}\right )}{8 \sqrt [3]{2} a^{4/3} d}+\frac {15}{8 d (a+i a \tan (c+d x))^{4/3}}+\frac {3 \tan ^2(c+d x)}{2 d (a+i a \tan (c+d x))^{4/3}}-\frac {27}{4 a d \sqrt [3]{a+i a \tan (c+d x)}} \]

output
-1/16*I*x*2^(2/3)/a^(4/3)-1/16*ln(cos(d*x+c))*2^(2/3)/a^(4/3)/d-3/16*ln(2^ 
(1/3)*a^(1/3)-(a+I*a*tan(d*x+c))^(1/3))*2^(2/3)/a^(4/3)/d-1/8*arctan(1/3*( 
a^(1/3)+2^(2/3)*(a+I*a*tan(d*x+c))^(1/3))/a^(1/3)*3^(1/2))*3^(1/2)*2^(2/3) 
/a^(4/3)/d+15/8/d/(a+I*a*tan(d*x+c))^(4/3)+3/2*tan(d*x+c)^2/d/(a+I*a*tan(d 
*x+c))^(4/3)-27/4/a/d/(a+I*a*tan(d*x+c))^(1/3)
 
3.4.1.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.60 (sec) , antiderivative size = 119, normalized size of antiderivative = 0.50 \[ \int \frac {\tan ^3(c+d x)}{(a+i a \tan (c+d x))^{4/3}} \, dx=\frac {3 \sec ^2(c+d x) \left (9 i+17 i \cos (2 (c+d x))-18 \sin (2 (c+d x))+\operatorname {Hypergeometric2F1}\left (\frac {2}{3},1,\frac {5}{3},\frac {1}{2} (1+i \tan (c+d x))\right ) (-i \cos (2 (c+d x))+\sin (2 (c+d x)))\right )}{16 a d (-i+\tan (c+d x)) \sqrt [3]{a+i a \tan (c+d x)}} \]

input
Integrate[Tan[c + d*x]^3/(a + I*a*Tan[c + d*x])^(4/3),x]
 
output
(3*Sec[c + d*x]^2*(9*I + (17*I)*Cos[2*(c + d*x)] - 18*Sin[2*(c + d*x)] + H 
ypergeometric2F1[2/3, 1, 5/3, (1 + I*Tan[c + d*x])/2]*((-I)*Cos[2*(c + d*x 
)] + Sin[2*(c + d*x)])))/(16*a*d*(-I + Tan[c + d*x])*(a + I*a*Tan[c + d*x] 
)^(1/3))
 
3.4.1.3 Rubi [A] (warning: unable to verify)

Time = 0.78 (sec) , antiderivative size = 215, normalized size of antiderivative = 0.91, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {3042, 4043, 27, 3042, 4073, 3042, 4009, 3042, 3962, 67, 16, 1082, 217}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\tan ^3(c+d x)}{(a+i a \tan (c+d x))^{4/3}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\tan (c+d x)^3}{(a+i a \tan (c+d x))^{4/3}}dx\)

\(\Big \downarrow \) 4043

\(\displaystyle \frac {3 \tan ^2(c+d x)}{2 d (a+i a \tan (c+d x))^{4/3}}-\frac {3 \int \frac {2 \tan (c+d x) (3 a-2 i a \tan (c+d x))}{3 (i \tan (c+d x) a+a)^{4/3}}dx}{2 a}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {3 \tan ^2(c+d x)}{2 d (a+i a \tan (c+d x))^{4/3}}-\frac {\int \frac {\tan (c+d x) (3 a-2 i a \tan (c+d x))}{(i \tan (c+d x) a+a)^{4/3}}dx}{a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3 \tan ^2(c+d x)}{2 d (a+i a \tan (c+d x))^{4/3}}-\frac {\int \frac {\tan (c+d x) (3 a-2 i a \tan (c+d x))}{(i \tan (c+d x) a+a)^{4/3}}dx}{a}\)

\(\Big \downarrow \) 4073

\(\displaystyle \frac {3 \tan ^2(c+d x)}{2 d (a+i a \tan (c+d x))^{4/3}}-\frac {-\frac {i \int \frac {5 a^2-4 i a^2 \tan (c+d x)}{\sqrt [3]{i \tan (c+d x) a+a}}dx}{2 a^2}-\frac {15 a}{8 d (a+i a \tan (c+d x))^{4/3}}}{a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3 \tan ^2(c+d x)}{2 d (a+i a \tan (c+d x))^{4/3}}-\frac {-\frac {i \int \frac {5 a^2-4 i a^2 \tan (c+d x)}{\sqrt [3]{i \tan (c+d x) a+a}}dx}{2 a^2}-\frac {15 a}{8 d (a+i a \tan (c+d x))^{4/3}}}{a}\)

\(\Big \downarrow \) 4009

\(\displaystyle \frac {3 \tan ^2(c+d x)}{2 d (a+i a \tan (c+d x))^{4/3}}-\frac {-\frac {i \left (\frac {1}{2} a \int (i \tan (c+d x) a+a)^{2/3}dx+\frac {27 i a^2}{2 d \sqrt [3]{a+i a \tan (c+d x)}}\right )}{2 a^2}-\frac {15 a}{8 d (a+i a \tan (c+d x))^{4/3}}}{a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3 \tan ^2(c+d x)}{2 d (a+i a \tan (c+d x))^{4/3}}-\frac {-\frac {i \left (\frac {1}{2} a \int (i \tan (c+d x) a+a)^{2/3}dx+\frac {27 i a^2}{2 d \sqrt [3]{a+i a \tan (c+d x)}}\right )}{2 a^2}-\frac {15 a}{8 d (a+i a \tan (c+d x))^{4/3}}}{a}\)

\(\Big \downarrow \) 3962

\(\displaystyle \frac {3 \tan ^2(c+d x)}{2 d (a+i a \tan (c+d x))^{4/3}}-\frac {-\frac {i \left (\frac {27 i a^2}{2 d \sqrt [3]{a+i a \tan (c+d x)}}-\frac {i a^2 \int \frac {1}{(a-i a \tan (c+d x)) \sqrt [3]{i \tan (c+d x) a+a}}d(i a \tan (c+d x))}{2 d}\right )}{2 a^2}-\frac {15 a}{8 d (a+i a \tan (c+d x))^{4/3}}}{a}\)

\(\Big \downarrow \) 67

\(\displaystyle \frac {3 \tan ^2(c+d x)}{2 d (a+i a \tan (c+d x))^{4/3}}-\frac {-\frac {i \left (\frac {27 i a^2}{2 d \sqrt [3]{a+i a \tan (c+d x)}}-\frac {i a^2 \left (-\frac {3}{2} \int \frac {1}{-a^2 \tan ^2(c+d x)+i \sqrt [3]{2} a^{4/3} \tan (c+d x)+2^{2/3} a^{2/3}}d\sqrt [3]{i \tan (c+d x) a+a}+\frac {3 \int \frac {1}{\sqrt [3]{2} \sqrt [3]{a}-i a \tan (c+d x)}d\sqrt [3]{i \tan (c+d x) a+a}}{2 \sqrt [3]{2} \sqrt [3]{a}}+\frac {\log (a-i a \tan (c+d x))}{2 \sqrt [3]{2} \sqrt [3]{a}}\right )}{2 d}\right )}{2 a^2}-\frac {15 a}{8 d (a+i a \tan (c+d x))^{4/3}}}{a}\)

\(\Big \downarrow \) 16

\(\displaystyle \frac {3 \tan ^2(c+d x)}{2 d (a+i a \tan (c+d x))^{4/3}}-\frac {-\frac {i \left (\frac {27 i a^2}{2 d \sqrt [3]{a+i a \tan (c+d x)}}-\frac {i a^2 \left (-\frac {3}{2} \int \frac {1}{-a^2 \tan ^2(c+d x)+i \sqrt [3]{2} a^{4/3} \tan (c+d x)+2^{2/3} a^{2/3}}d\sqrt [3]{i \tan (c+d x) a+a}-\frac {3 \log \left (\sqrt [3]{2} \sqrt [3]{a}-i a \tan (c+d x)\right )}{2 \sqrt [3]{2} \sqrt [3]{a}}+\frac {\log (a-i a \tan (c+d x))}{2 \sqrt [3]{2} \sqrt [3]{a}}\right )}{2 d}\right )}{2 a^2}-\frac {15 a}{8 d (a+i a \tan (c+d x))^{4/3}}}{a}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {3 \tan ^2(c+d x)}{2 d (a+i a \tan (c+d x))^{4/3}}-\frac {-\frac {i \left (\frac {27 i a^2}{2 d \sqrt [3]{a+i a \tan (c+d x)}}-\frac {i a^2 \left (\frac {3 \int \frac {1}{a^2 \tan ^2(c+d x)-3}d\left (i 2^{2/3} a^{2/3} \tan (c+d x)+1\right )}{\sqrt [3]{2} \sqrt [3]{a}}-\frac {3 \log \left (\sqrt [3]{2} \sqrt [3]{a}-i a \tan (c+d x)\right )}{2 \sqrt [3]{2} \sqrt [3]{a}}+\frac {\log (a-i a \tan (c+d x))}{2 \sqrt [3]{2} \sqrt [3]{a}}\right )}{2 d}\right )}{2 a^2}-\frac {15 a}{8 d (a+i a \tan (c+d x))^{4/3}}}{a}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {3 \tan ^2(c+d x)}{2 d (a+i a \tan (c+d x))^{4/3}}-\frac {-\frac {i \left (\frac {27 i a^2}{2 d \sqrt [3]{a+i a \tan (c+d x)}}-\frac {i a^2 \left (-\frac {i \sqrt {3} \text {arctanh}\left (\frac {a \tan (c+d x)}{\sqrt {3}}\right )}{\sqrt [3]{2} \sqrt [3]{a}}-\frac {3 \log \left (\sqrt [3]{2} \sqrt [3]{a}-i a \tan (c+d x)\right )}{2 \sqrt [3]{2} \sqrt [3]{a}}+\frac {\log (a-i a \tan (c+d x))}{2 \sqrt [3]{2} \sqrt [3]{a}}\right )}{2 d}\right )}{2 a^2}-\frac {15 a}{8 d (a+i a \tan (c+d x))^{4/3}}}{a}\)

input
Int[Tan[c + d*x]^3/(a + I*a*Tan[c + d*x])^(4/3),x]
 
output
(3*Tan[c + d*x]^2)/(2*d*(a + I*a*Tan[c + d*x])^(4/3)) - ((-15*a)/(8*d*(a + 
 I*a*Tan[c + d*x])^(4/3)) - ((I/2)*(((-1/2*I)*a^2*(((-I)*Sqrt[3]*ArcTanh[( 
a*Tan[c + d*x])/Sqrt[3]])/(2^(1/3)*a^(1/3)) - (3*Log[2^(1/3)*a^(1/3) - I*a 
*Tan[c + d*x]])/(2*2^(1/3)*a^(1/3)) + Log[a - I*a*Tan[c + d*x]]/(2*2^(1/3) 
*a^(1/3))))/d + (((27*I)/2)*a^2)/(d*(a + I*a*Tan[c + d*x])^(1/3))))/a^2)/a
 

3.4.1.3.1 Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 67
Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(1/3)), x_Symbol] :> With[ 
{q = Rt[(b*c - a*d)/b, 3]}, Simp[-Log[RemoveContent[a + b*x, x]]/(2*b*q), x 
] + (Simp[3/(2*b)   Subst[Int[1/(q^2 + q*x + x^2), x], x, (c + d*x)^(1/3)], 
 x] - Simp[3/(2*b*q)   Subst[Int[1/(q - x), x], x, (c + d*x)^(1/3)], x])] / 
; FreeQ[{a, b, c, d}, x] && PosQ[(b*c - a*d)/b]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3962
Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[-b/d   S 
ubst[Int[(a + x)^(n - 1)/(a - x), x], x, b*Tan[c + d*x]], x] /; FreeQ[{a, b 
, c, d, n}, x] && EqQ[a^2 + b^2, 0]
 

rule 4009
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
(f_.)*(x_)]), x_Symbol] :> Simp[(-(b*c - a*d))*((a + b*Tan[e + f*x])^m/(2*a 
*f*m)), x] + Simp[(b*c + a*d)/(2*a*b)   Int[(a + b*Tan[e + f*x])^(m + 1), x 
], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2 
, 0] && LtQ[m, 0]
 

rule 4043
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[d*(a + b*Tan[e + f*x])^m*((c + d*Tan[e 
 + f*x])^(n - 1)/(f*(m + n - 1))), x] - Simp[1/(a*(m + n - 1))   Int[(a + b 
*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n - 2)*Simp[d*(b*c*m + a*d*(-1 + n)) 
 - a*c^2*(m + n - 1) + d*(b*d*m - a*c*(m + 2*n - 2))*Tan[e + f*x], x], x], 
x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2 
, 0] && NeQ[c^2 + d^2, 0] && GtQ[n, 1] && NeQ[m + n - 1, 0] && (IntegerQ[n] 
 || IntegersQ[2*m, 2*n])
 

rule 4073
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-( 
A*b - a*B))*(a*c + b*d)*((a + b*Tan[e + f*x])^m/(2*a^2*f*m)), x] + Simp[1/( 
2*a*b)   Int[(a + b*Tan[e + f*x])^(m + 1)*Simp[A*b*c + a*B*c + a*A*d + b*B* 
d + 2*a*B*d*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] 
&& NeQ[b*c - a*d, 0] && LtQ[m, -1] && EqQ[a^2 + b^2, 0]
 
3.4.1.4 Maple [A] (verified)

Time = 0.55 (sec) , antiderivative size = 198, normalized size of antiderivative = 0.84

method result size
derivativedivides \(-\frac {3 \left (a +i a \tan \left (d x +c \right )\right )^{\frac {2}{3}}}{2 d \,a^{2}}-\frac {2^{\frac {2}{3}} \ln \left (\left (a +i a \tan \left (d x +c \right )\right )^{\frac {1}{3}}-2^{\frac {1}{3}} a^{\frac {1}{3}}\right )}{8 d \,a^{\frac {4}{3}}}+\frac {2^{\frac {2}{3}} \ln \left (\left (a +i a \tan \left (d x +c \right )\right )^{\frac {2}{3}}+2^{\frac {1}{3}} a^{\frac {1}{3}} \left (a +i a \tan \left (d x +c \right )\right )^{\frac {1}{3}}+2^{\frac {2}{3}} a^{\frac {2}{3}}\right )}{16 d \,a^{\frac {4}{3}}}-\frac {\sqrt {3}\, 2^{\frac {2}{3}} \arctan \left (\frac {\sqrt {3}\, \left (\frac {2^{\frac {2}{3}} \left (a +i a \tan \left (d x +c \right )\right )^{\frac {1}{3}}}{a^{\frac {1}{3}}}+1\right )}{3}\right )}{8 d \,a^{\frac {4}{3}}}-\frac {15}{4 a d \left (a +i a \tan \left (d x +c \right )\right )^{\frac {1}{3}}}+\frac {3}{8 d \left (a +i a \tan \left (d x +c \right )\right )^{\frac {4}{3}}}\) \(198\)
default \(-\frac {3 \left (a +i a \tan \left (d x +c \right )\right )^{\frac {2}{3}}}{2 d \,a^{2}}-\frac {2^{\frac {2}{3}} \ln \left (\left (a +i a \tan \left (d x +c \right )\right )^{\frac {1}{3}}-2^{\frac {1}{3}} a^{\frac {1}{3}}\right )}{8 d \,a^{\frac {4}{3}}}+\frac {2^{\frac {2}{3}} \ln \left (\left (a +i a \tan \left (d x +c \right )\right )^{\frac {2}{3}}+2^{\frac {1}{3}} a^{\frac {1}{3}} \left (a +i a \tan \left (d x +c \right )\right )^{\frac {1}{3}}+2^{\frac {2}{3}} a^{\frac {2}{3}}\right )}{16 d \,a^{\frac {4}{3}}}-\frac {\sqrt {3}\, 2^{\frac {2}{3}} \arctan \left (\frac {\sqrt {3}\, \left (\frac {2^{\frac {2}{3}} \left (a +i a \tan \left (d x +c \right )\right )^{\frac {1}{3}}}{a^{\frac {1}{3}}}+1\right )}{3}\right )}{8 d \,a^{\frac {4}{3}}}-\frac {15}{4 a d \left (a +i a \tan \left (d x +c \right )\right )^{\frac {1}{3}}}+\frac {3}{8 d \left (a +i a \tan \left (d x +c \right )\right )^{\frac {4}{3}}}\) \(198\)

input
int(tan(d*x+c)^3/(a+I*a*tan(d*x+c))^(4/3),x,method=_RETURNVERBOSE)
 
output
-3/2/d/a^2*(a+I*a*tan(d*x+c))^(2/3)-1/8/d/a^(4/3)*2^(2/3)*ln((a+I*a*tan(d* 
x+c))^(1/3)-2^(1/3)*a^(1/3))+1/16/d/a^(4/3)*2^(2/3)*ln((a+I*a*tan(d*x+c))^ 
(2/3)+2^(1/3)*a^(1/3)*(a+I*a*tan(d*x+c))^(1/3)+2^(2/3)*a^(2/3))-1/8/d/a^(4 
/3)*3^(1/2)*2^(2/3)*arctan(1/3*3^(1/2)*(2^(2/3)/a^(1/3)*(a+I*a*tan(d*x+c)) 
^(1/3)+1))-15/4/a/d/(a+I*a*tan(d*x+c))^(1/3)+3/8/d/(a+I*a*tan(d*x+c))^(4/3 
)
 
3.4.1.5 Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 366 vs. \(2 (172) = 344\).

Time = 0.25 (sec) , antiderivative size = 366, normalized size of antiderivative = 1.54 \[ \int \frac {\tan ^3(c+d x)}{(a+i a \tan (c+d x))^{4/3}} \, dx=\frac {{\left (8 \, \left (\frac {1}{2}\right )^{\frac {1}{3}} a^{2} d \left (-\frac {1}{a^{4} d^{3}}\right )^{\frac {1}{3}} e^{\left (4 i \, d x + 4 i \, c\right )} \log \left (-2 \, \left (\frac {1}{2}\right )^{\frac {2}{3}} a^{3} d^{2} \left (-\frac {1}{a^{4} d^{3}}\right )^{\frac {2}{3}} + 2^{\frac {1}{3}} \left (\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}\right )^{\frac {1}{3}} e^{\left (\frac {2}{3} i \, d x + \frac {2}{3} i \, c\right )}\right ) - 4 \, \left (\frac {1}{2}\right )^{\frac {1}{3}} {\left (i \, \sqrt {3} a^{2} d + a^{2} d\right )} \left (-\frac {1}{a^{4} d^{3}}\right )^{\frac {1}{3}} e^{\left (4 i \, d x + 4 i \, c\right )} \log \left (-\left (\frac {1}{2}\right )^{\frac {2}{3}} {\left (i \, \sqrt {3} a^{3} d^{2} - a^{3} d^{2}\right )} \left (-\frac {1}{a^{4} d^{3}}\right )^{\frac {2}{3}} + 2^{\frac {1}{3}} \left (\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}\right )^{\frac {1}{3}} e^{\left (\frac {2}{3} i \, d x + \frac {2}{3} i \, c\right )}\right ) - 4 \, \left (\frac {1}{2}\right )^{\frac {1}{3}} {\left (-i \, \sqrt {3} a^{2} d + a^{2} d\right )} \left (-\frac {1}{a^{4} d^{3}}\right )^{\frac {1}{3}} e^{\left (4 i \, d x + 4 i \, c\right )} \log \left (-\left (\frac {1}{2}\right )^{\frac {2}{3}} {\left (-i \, \sqrt {3} a^{3} d^{2} - a^{3} d^{2}\right )} \left (-\frac {1}{a^{4} d^{3}}\right )^{\frac {2}{3}} + 2^{\frac {1}{3}} \left (\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}\right )^{\frac {1}{3}} e^{\left (\frac {2}{3} i \, d x + \frac {2}{3} i \, c\right )}\right ) - 3 \cdot 2^{\frac {2}{3}} \left (\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}\right )^{\frac {2}{3}} {\left (35 \, e^{\left (4 i \, d x + 4 i \, c\right )} + 18 \, e^{\left (2 i \, d x + 2 i \, c\right )} - 1\right )} e^{\left (\frac {4}{3} i \, d x + \frac {4}{3} i \, c\right )}\right )} e^{\left (-4 i \, d x - 4 i \, c\right )}}{32 \, a^{2} d} \]

input
integrate(tan(d*x+c)^3/(a+I*a*tan(d*x+c))^(4/3),x, algorithm="fricas")
 
output
1/32*(8*(1/2)^(1/3)*a^2*d*(-1/(a^4*d^3))^(1/3)*e^(4*I*d*x + 4*I*c)*log(-2* 
(1/2)^(2/3)*a^3*d^2*(-1/(a^4*d^3))^(2/3) + 2^(1/3)*(a/(e^(2*I*d*x + 2*I*c) 
 + 1))^(1/3)*e^(2/3*I*d*x + 2/3*I*c)) - 4*(1/2)^(1/3)*(I*sqrt(3)*a^2*d + a 
^2*d)*(-1/(a^4*d^3))^(1/3)*e^(4*I*d*x + 4*I*c)*log(-(1/2)^(2/3)*(I*sqrt(3) 
*a^3*d^2 - a^3*d^2)*(-1/(a^4*d^3))^(2/3) + 2^(1/3)*(a/(e^(2*I*d*x + 2*I*c) 
 + 1))^(1/3)*e^(2/3*I*d*x + 2/3*I*c)) - 4*(1/2)^(1/3)*(-I*sqrt(3)*a^2*d + 
a^2*d)*(-1/(a^4*d^3))^(1/3)*e^(4*I*d*x + 4*I*c)*log(-(1/2)^(2/3)*(-I*sqrt( 
3)*a^3*d^2 - a^3*d^2)*(-1/(a^4*d^3))^(2/3) + 2^(1/3)*(a/(e^(2*I*d*x + 2*I* 
c) + 1))^(1/3)*e^(2/3*I*d*x + 2/3*I*c)) - 3*2^(2/3)*(a/(e^(2*I*d*x + 2*I*c 
) + 1))^(2/3)*(35*e^(4*I*d*x + 4*I*c) + 18*e^(2*I*d*x + 2*I*c) - 1)*e^(4/3 
*I*d*x + 4/3*I*c))*e^(-4*I*d*x - 4*I*c)/(a^2*d)
 
3.4.1.6 Sympy [F]

\[ \int \frac {\tan ^3(c+d x)}{(a+i a \tan (c+d x))^{4/3}} \, dx=\int \frac {\tan ^{3}{\left (c + d x \right )}}{\left (i a \left (\tan {\left (c + d x \right )} - i\right )\right )^{\frac {4}{3}}}\, dx \]

input
integrate(tan(d*x+c)**3/(a+I*a*tan(d*x+c))**(4/3),x)
 
output
Integral(tan(c + d*x)**3/(I*a*(tan(c + d*x) - I))**(4/3), x)
 
3.4.1.7 Maxima [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 191, normalized size of antiderivative = 0.81 \[ \int \frac {\tan ^3(c+d x)}{(a+i a \tan (c+d x))^{4/3}} \, dx=-\frac {2 \, \sqrt {3} 2^{\frac {2}{3}} a^{\frac {8}{3}} \arctan \left (\frac {\sqrt {3} 2^{\frac {2}{3}} {\left (2^{\frac {1}{3}} a^{\frac {1}{3}} + 2 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {1}{3}}\right )}}{6 \, a^{\frac {1}{3}}}\right ) - 2^{\frac {2}{3}} a^{\frac {8}{3}} \log \left (2^{\frac {2}{3}} a^{\frac {2}{3}} + 2^{\frac {1}{3}} {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {1}{3}} a^{\frac {1}{3}} + {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {2}{3}}\right ) + 2 \cdot 2^{\frac {2}{3}} a^{\frac {8}{3}} \log \left (-2^{\frac {1}{3}} a^{\frac {1}{3}} + {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {1}{3}}\right ) + 24 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {2}{3}} a^{2} + \frac {6 \, {\left (10 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )} a^{3} - a^{4}\right )}}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {4}{3}}}}{16 \, a^{4} d} \]

input
integrate(tan(d*x+c)^3/(a+I*a*tan(d*x+c))^(4/3),x, algorithm="maxima")
 
output
-1/16*(2*sqrt(3)*2^(2/3)*a^(8/3)*arctan(1/6*sqrt(3)*2^(2/3)*(2^(1/3)*a^(1/ 
3) + 2*(I*a*tan(d*x + c) + a)^(1/3))/a^(1/3)) - 2^(2/3)*a^(8/3)*log(2^(2/3 
)*a^(2/3) + 2^(1/3)*(I*a*tan(d*x + c) + a)^(1/3)*a^(1/3) + (I*a*tan(d*x + 
c) + a)^(2/3)) + 2*2^(2/3)*a^(8/3)*log(-2^(1/3)*a^(1/3) + (I*a*tan(d*x + c 
) + a)^(1/3)) + 24*(I*a*tan(d*x + c) + a)^(2/3)*a^2 + 6*(10*(I*a*tan(d*x + 
 c) + a)*a^3 - a^4)/(I*a*tan(d*x + c) + a)^(4/3))/(a^4*d)
 
3.4.1.8 Giac [F]

\[ \int \frac {\tan ^3(c+d x)}{(a+i a \tan (c+d x))^{4/3}} \, dx=\int { \frac {\tan \left (d x + c\right )^{3}}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {4}{3}}} \,d x } \]

input
integrate(tan(d*x+c)^3/(a+I*a*tan(d*x+c))^(4/3),x, algorithm="giac")
 
output
integrate(tan(d*x + c)^3/(I*a*tan(d*x + c) + a)^(4/3), x)
 
3.4.1.9 Mupad [B] (verification not implemented)

Time = 0.20 (sec) , antiderivative size = 214, normalized size of antiderivative = 0.90 \[ \int \frac {\tan ^3(c+d x)}{(a+i a \tan (c+d x))^{4/3}} \, dx=-\frac {3\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{2/3}}{2\,a^2\,d}-\frac {4^{1/3}\,\ln \left (36\,a\,d\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{1/3}-18\,4^{2/3}\,a^{4/3}\,d\right )}{8\,a^{4/3}\,d}-\frac {\frac {27\,a}{8}+\frac {a\,\mathrm {tan}\left (c+d\,x\right )\,15{}\mathrm {i}}{4}}{a\,d\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{4/3}}-\frac {4^{1/3}\,\ln \left (36\,a\,d\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{1/3}-1152\,4^{2/3}\,a^{4/3}\,d\,{\left (-\frac {1}{16}+\frac {\sqrt {3}\,1{}\mathrm {i}}{16}\right )}^2\right )\,\left (-\frac {1}{16}+\frac {\sqrt {3}\,1{}\mathrm {i}}{16}\right )}{a^{4/3}\,d}+\frac {4^{1/3}\,\ln \left (36\,a\,d\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{1/3}-1152\,4^{2/3}\,a^{4/3}\,d\,{\left (\frac {1}{16}+\frac {\sqrt {3}\,1{}\mathrm {i}}{16}\right )}^2\right )\,\left (\frac {1}{16}+\frac {\sqrt {3}\,1{}\mathrm {i}}{16}\right )}{a^{4/3}\,d} \]

input
int(tan(c + d*x)^3/(a + a*tan(c + d*x)*1i)^(4/3),x)
 
output
(4^(1/3)*log(36*a*d*(a + a*tan(c + d*x)*1i)^(1/3) - 1152*4^(2/3)*a^(4/3)*d 
*((3^(1/2)*1i)/16 + 1/16)^2)*((3^(1/2)*1i)/16 + 1/16))/(a^(4/3)*d) - (4^(1 
/3)*log(36*a*d*(a + a*tan(c + d*x)*1i)^(1/3) - 18*4^(2/3)*a^(4/3)*d))/(8*a 
^(4/3)*d) - ((27*a)/8 + (a*tan(c + d*x)*15i)/4)/(a*d*(a + a*tan(c + d*x)*1 
i)^(4/3)) - (4^(1/3)*log(36*a*d*(a + a*tan(c + d*x)*1i)^(1/3) - 1152*4^(2/ 
3)*a^(4/3)*d*((3^(1/2)*1i)/16 - 1/16)^2)*((3^(1/2)*1i)/16 - 1/16))/(a^(4/3 
)*d) - (3*(a + a*tan(c + d*x)*1i)^(2/3))/(2*a^2*d)